Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems
نویسنده
چکیده
Model-checking is a popular technique for verifying finite-state concurrent systems, the behaviour of which can be modeled using Labeled Transition Systems (Ltss). In this report, we study the model-checking problem for the modal μ-calculus on acyclic Ltss. This has various applications of practical interest such as trace analysis, log information auditing, run-time monitoring, etc. We show that on acyclic Ltss, the full μ-calculus has the same expressive power as its alternation-free fragment. We also present two new algorithms for local model-checking of μ-calculus formulas on acyclic Ltss. Our algorithms are based upon a translation to boolean equation systems and exhibit a better performance than existing model-checking algorithms applied to acyclic Ltss. The first algorithm handles μ-calculus formulas φ with alternation depth ad(φ) ≥ 2 and has time complexity O(|φ| · (|S| + |T |)) and space complexity O(|φ| · |S|), where |S| and |T | are the number of states and transitions of the acyclic Lts and |φ| is the number of operators in φ. The second algorithm handles formulas φ with alternation depth ad(φ) = 1 and has time complexity O(|φ| · (|S| + |T |)) and space complexity O(|φ| · |S|). Key-words: labeled transition system, model-checking, mu-calculus, specification, temporal logic, verification A short version of this research report is also available as “Local Model-Checking of Modal Mu-Calculus on Acyclic Labeled Transition Systems”, in Joost-Pieter Katoen and Perdita Stevens, editors, Proceedings of the 8th International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS’2002 (Grenoble, France), April 2002. ∗ [email protected] Vérification à la volée du mu-calcul modal sur des systèmes de transitions étiquetées sans circuit Résumé : La vérification énumérative (model-checking) est une technique largement utilisée pour valider les systèmes concurrents à nombre fini d’états, le comportement desquels peut être modélisé au moyen de systèmes de transitions étiquetées (Stes). Dans ce rapport, nous étudions le problème de la vérification des formules du μ-calcul modal sur des Stes sans circuit. Ce problème a diverses applications d’intérêt pratique, comme l’analyse de traces, l’audit d’informations de sécurité, le suivi en temps-réel, etc. Nous montrons que, sur des Stes sans circuit, le μ-calcul complet possède la même expressivité que son fragment d’alternance 1. Nous présentons également deux nouveaux algorithmes pour la vérification à la volée des formules du μ-calcul sur des Stes sans circuit. Nos algorithmes sont basés sur une traduction vers des systèmes d’équations booléennes et présentent de meilleures performances que les algorithmes de vérification existants appliqués à des Stes sans circuit. Le premier algorithme permet de traiter des formules φ du μ-calcul d’alternance ad(φ) ≥ 2 avec une complexité O(|φ| · (|S|+ |T |)) en temps d’éxecution et O(|φ| · |S|) en espace mémoire, où |S| et |T | dénotent le nombre d’états et de transitions du Ste sans circuit et |φ| dénote le nombre d’opérateurs de φ. Le deuxième algorithme permet de traiter des formules φ d’alternance ad(φ) = 1 avec une complexité O(|φ| · (|S|+ |T |)) en temps et O(|φ| · |S|) en mémoire. Mots-clés : logique temporelle, mu-calcul, spécification, système de transitions étiquetées, vérification Local Model-Checking of Modal Mu-Calculus on Acyclic LTSs 3
منابع مشابه
Partial - Order Reduction in theWeak Modal Mu -
We present a partial-order reduction technique for local model checking of hierarchical networks of labeled transition systems in the weak modal mu-calculus. We have implemented our technique in the Concur-rency Factory speciication and veriication environment; experimental results show that partial-order reduction can be highly eeective in combating state explosion in modal mu-calculus model c...
متن کاملEfficient Graph-based Algorithms for Model Checking in the Modal Mu-calculus Abstract of the Dissertation Eecient Graph-based Algorithms for Model Checking in the Modal Mu-calculus
of the Dissertation E cient Graph-Based Algorithms for Model Checking in the Modal Mu-Calculus by Oleg Sokolsky Doctor of Philosophy in Computer Science State University of New York at Stony Brook 1996 Various model-checking algorithms for the alternation-free subset of the modal mu-calculus are considered. The algorithms are based on a data structure called the product graph, which represents ...
متن کاملSelective Mu-Calculus and Formula-Based Equivalence of Transition Systems
In model checking for temporal logic, the correctness of a system with respect to a desired behavior is verified by checking whether a structure that models the system satisfies a formula describing the behavior. Most existing verification techniques are based on a representation of the system by means of a labeled transition system. In this approach to verification, the efficiency of the model...
متن کاملOn the Parallel Complexity of Model Checking in the Modal Mu-Calculus
The modal mu-calculus is an expressive logic that can be used to specify safety and liveness properties of concurrent systems represented as labeled transition systems (LTSs). We show that Model Checking in the Modal Mu-Calculus (MCMMC) — the problem of checking whether an LTS is a model of a formula of the propositional modal mu-calculus — is P-complete even for a very restrictive version of t...
متن کاملSystem Description, Abstraction, and Veriication: a Uniform Treatment of Quality and Quantity
We build on the established work on modal transition systems and probabilistic speci-cations to sketch a framework in which system descriptions, abstraction, and nite-state model checking all have a uniform presentation across various levels of qualitative and quantitative views together with mediating abstraction and concretization maps. We choose labeled Kripke structures, modal transition sy...
متن کامل